


Daily Tutorial Sheet-4 JEE Advanced (Archive)

46. $LiF \rightarrow more ionic, LiI \rightarrow more covalent$

Both LiF and LiI are expected to be ionic compounds. However, LiI is predominantly covalent because of small size of Li^+ and large size of iodide ion. A smaller cation and a larger anion introduces covalency in ionic compound.

47.(C)

Therefore, NF_3 , H_3O^+ and BF_3 , NO_3^- pairs have same shape.

48.(D) BF_3 has triangular planar arrangement.

There identical vectors acting in outward direction, at equal angles in a plane, cancel each other giving zero resultant, hence non-polar.

49.(B) According to molecular orbital theory.

50. Increases, decreases

Bond order in N_2 is 3 while same in N_2^+ is 2.5, hence bond distance increases as N_2 goes to N_2^+ .

Bond order in O_2 is 2 while same in O_2^+ is 2.5, hence bond distance decreases as O_2^- goes to.

51. (N_2O, I_3^-) N_2O and I_3^- are linear species.

52.(B) Sulphur in SO_2 is sp^2 – hybridized.

Electron pair = $2 (\sigma - bonds) + 1 (lone pair) = 3$

Hybridisation = sp^2

Carbon in ${\rm CO_2}$ is sp-hybridised, N in ${\rm N_2O}$ is sp-hybridised, carbon in CO is sp-hybridised.

Solution | workbook-1 39 Chemical Bonding - I & II

53.(C) Molecular orbital electronic configuration are

$$\mathrm{KO}_{2}(\mathrm{O}_{2}^{-}) : \mathtt{\sigma1s}^{2} \, \overset{*}{\mathtt{\sigma}} \, 1s^{2} \, \mathtt{\sigma} \, 2s^{2} \, \overset{*}{\mathtt{\sigma}} \, 2s^{2} \mathtt{\sigma} \, 2p_{x}^{2} \left| \begin{matrix} \pi 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{matrix} \right|_{\pi}^{*} \, 2p_{y}^{2} \right|_{\mathfrak{\sigma}}^{*} \, 2p_{x}^{0}$$

Has one unpaired electron in π^2 2p orbital.

 AlO_2^- has both oxygen in O^{2-} state, therefore, no unpaired electron is present.

$$BaO_2 (O_2^{2-})$$

$$\sigma ls^{2} \overset{*}{\sigma} ls^{2} \sigma 2s^{2} \overset{*}{\sigma} 2s^{2} \sigma 2p_{x}^{2} \begin{vmatrix} \pi 2p_{y}^{2} \\ \pi 2p_{z}^{2} \\ \pi 2p_{z}^{2} \end{vmatrix} \overset{*}{\sigma} 2p_{y}^{2} \\ \overset{*}{\sigma} 2p_{x}^{0}$$

Has no unpaired electron.

 NO_2^+ has $[O = N^+ = O]$ binding, hence no unpaired electron.

$\textbf{54.(B)} \qquad \text{N_2 is a neutral, non-polar, inert molecule while CN^- is a highly polar, highly active ion.}$

55.(C) H₂O₂

56.(C) Statement I is correct but Statement II is incorrect. The covalency in LiCl is due to small size of Li⁺ion which brings about large amount of polarization in bond.

57.(A) Statement I is correct, given structure is one of the resonance structure of ozone.

$$0 \downarrow 0 \downarrow 0 \downarrow 0 \downarrow 0$$

Statement II is also correct because oxygen cannot expand its octet. It is also the explanation for the given structure of ozone.

58. $H_2S \rightarrow V$ -shaped, $PCl_3 \rightarrow pyramidal$

In H_2S , S is sp^3 – hybridized with two lone pairs of electrons on it giving V-shaped (water like) shape. In PCl_3 , P is sp^3 – hybridized with one lone pair of electrons on it.

Therefore, PCl₃ is pyramidal in shape.

59. $sp^3, V - shaped, F = -1, O = +2$

Solution | workbook-1 40 Chemical Bonding - I & II